Copied to
clipboard

G = C3×C22⋊F5order 240 = 24·3·5

Direct product of C3 and C22⋊F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×C22⋊F5, D102C12, (C2×F5)⋊C6, (C2×C6)⋊1F5, (C2×C30)⋊3C4, (C6×D5)⋊6C4, (C6×F5)⋊3C2, (C2×C10)⋊3C12, C2.7(C6×F5), (C3×D5).6D4, D5.2(C3×D4), C6.21(C2×F5), C222(C3×F5), C153(C22⋊C4), C30.21(C2×C4), C10.7(C2×C12), D10.6(C2×C6), (C22×D5).3C6, (C6×D5).25C22, C5⋊(C3×C22⋊C4), (D5×C2×C6).6C2, SmallGroup(240,117)

Series: Derived Chief Lower central Upper central

C1C10 — C3×C22⋊F5
C1C5C10D10C6×D5C6×F5 — C3×C22⋊F5
C5C10 — C3×C22⋊F5
C1C6C2×C6

Generators and relations for C3×C22⋊F5
 G = < a,b,c,d,e | a3=b2=c2=d5=e4=1, ab=ba, ac=ca, ad=da, ae=ea, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d3 >

Subgroups: 236 in 68 conjugacy classes, 28 normal (20 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C2×C4, C23, D5, D5, C10, C10, C12, C2×C6, C2×C6, C15, C22⋊C4, F5, D10, D10, C2×C10, C2×C12, C22×C6, C3×D5, C3×D5, C30, C30, C2×F5, C22×D5, C3×C22⋊C4, C3×F5, C6×D5, C6×D5, C2×C30, C22⋊F5, C6×F5, D5×C2×C6, C3×C22⋊F5
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, F5, C2×C12, C3×D4, C2×F5, C3×C22⋊C4, C3×F5, C22⋊F5, C6×F5, C3×C22⋊F5

Smallest permutation representation of C3×C22⋊F5
On 60 points
Generators in S60
(1 24 14)(2 25 15)(3 21 11)(4 22 12)(5 23 13)(6 26 16)(7 27 17)(8 28 18)(9 29 19)(10 30 20)(31 51 41)(32 52 42)(33 53 43)(34 54 44)(35 55 45)(36 56 46)(37 57 47)(38 58 48)(39 59 49)(40 60 50)
(1 34)(2 35)(3 31)(4 32)(5 33)(6 36)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 49)(20 50)(21 51)(22 52)(23 53)(24 54)(25 55)(26 56)(27 57)(28 58)(29 59)(30 60)
(1 9)(2 10)(3 6)(4 7)(5 8)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)(41 46)(42 47)(43 48)(44 49)(45 50)(51 56)(52 57)(53 58)(54 59)(55 60)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 34 9 39)(2 31 8 37)(3 33 7 40)(4 35 6 38)(5 32 10 36)(11 43 17 50)(12 45 16 48)(13 42 20 46)(14 44 19 49)(15 41 18 47)(21 53 27 60)(22 55 26 58)(23 52 30 56)(24 54 29 59)(25 51 28 57)

G:=sub<Sym(60)| (1,24,14)(2,25,15)(3,21,11)(4,22,12)(5,23,13)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50), (1,34)(2,35)(3,31)(4,32)(5,33)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,34,9,39)(2,31,8,37)(3,33,7,40)(4,35,6,38)(5,32,10,36)(11,43,17,50)(12,45,16,48)(13,42,20,46)(14,44,19,49)(15,41,18,47)(21,53,27,60)(22,55,26,58)(23,52,30,56)(24,54,29,59)(25,51,28,57)>;

G:=Group( (1,24,14)(2,25,15)(3,21,11)(4,22,12)(5,23,13)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50), (1,34)(2,35)(3,31)(4,32)(5,33)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,34,9,39)(2,31,8,37)(3,33,7,40)(4,35,6,38)(5,32,10,36)(11,43,17,50)(12,45,16,48)(13,42,20,46)(14,44,19,49)(15,41,18,47)(21,53,27,60)(22,55,26,58)(23,52,30,56)(24,54,29,59)(25,51,28,57) );

G=PermutationGroup([[(1,24,14),(2,25,15),(3,21,11),(4,22,12),(5,23,13),(6,26,16),(7,27,17),(8,28,18),(9,29,19),(10,30,20),(31,51,41),(32,52,42),(33,53,43),(34,54,44),(35,55,45),(36,56,46),(37,57,47),(38,58,48),(39,59,49),(40,60,50)], [(1,34),(2,35),(3,31),(4,32),(5,33),(6,36),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,49),(20,50),(21,51),(22,52),(23,53),(24,54),(25,55),(26,56),(27,57),(28,58),(29,59),(30,60)], [(1,9),(2,10),(3,6),(4,7),(5,8),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40),(41,46),(42,47),(43,48),(44,49),(45,50),(51,56),(52,57),(53,58),(54,59),(55,60)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,34,9,39),(2,31,8,37),(3,33,7,40),(4,35,6,38),(5,32,10,36),(11,43,17,50),(12,45,16,48),(13,42,20,46),(14,44,19,49),(15,41,18,47),(21,53,27,60),(22,55,26,58),(23,52,30,56),(24,54,29,59),(25,51,28,57)]])

C3×C22⋊F5 is a maximal subgroup of   D10.D12  D10.4D12  C22⋊F5.S3  C3⋊D4⋊F5  C3×D4×F5

42 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D 5 6A6B6C6D6E6F6G6H6I6J10A10B10C12A···12H15A15B30A···30F
order1222223344445666666666610101012···12151530···30
size11255101110101010411225555101044410···10444···4

42 irreducible representations

dim111111111122444444
type+++++++
imageC1C2C2C3C4C4C6C6C12C12D4C3×D4F5C2×F5C3×F5C22⋊F5C6×F5C3×C22⋊F5
kernelC3×C22⋊F5C6×F5D5×C2×C6C22⋊F5C6×D5C2×C30C2×F5C22×D5D10C2×C10C3×D5D5C2×C6C6C22C3C2C1
# reps121222424424112224

Matrix representation of C3×C22⋊F5 in GL6(𝔽61)

100000
010000
0013000
0001300
0000130
0000013
,
1590000
0600000
001000
000100
000010
000001
,
6000000
0600000
001000
000100
000010
000001
,
100000
010000
000100
000010
000001
0060606060
,
6020000
6010000
000010
001000
000001
000100

G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13],[1,0,0,0,0,0,59,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,0,0,1,0,0,60,0,0,0,1,0,60,0,0,0,0,1,60],[60,60,0,0,0,0,2,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0] >;

C3×C22⋊F5 in GAP, Magma, Sage, TeX

C_3\times C_2^2\rtimes F_5
% in TeX

G:=Group("C3xC2^2:F5");
// GroupNames label

G:=SmallGroup(240,117);
// by ID

G=gap.SmallGroup(240,117);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-5,72,313,3461,599]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽